Gating of O2-sensitive K+ channels of arterial chemoreceptor cells and kinetic modifications induced by low PO2
نویسندگان
چکیده
We have studied the kinetic properties of the O2-sensitive K+ channels (KO2 channels) of dissociated glomus cells from rabbit carotid bodies exposed to variable O2 tension (PO2). Experiments were done using single-channel and whole-cell recording techniques. The major gating properties of KO2 channels in excised membrane patches can be explained by a minimal kinetic scheme that includes several closed states (C0 to C4), an open state (O), and two inactivated states (I0 and I1). At negative membrane potentials most channels are distributed between the left-most closed states (C0 and C1), but membrane depolarization displaces the equilibrium toward the open state. After opening, channels undergo reversible transitions to a short-living closed state (C4). These transitions configure a burst, which terminates by channels either returning to a closed state in the activation pathway (C3) or entering a reversible inactivated conformation (I0). Burst duration increases with membrane depolarization. During a maintained depolarization, KO2 channels make several bursts before ending at a nonreversible, absorbing, inactivated state (I1). On moderate depolarizations, KO2 channels inactivate very often from a closed state. Exposure to low PO2 reversibly induces an increase in the first latency, a decrease in the number of bursts per trace, and a higher occurrence of closed-state inactivation. The open state and the transitions to adjacent closed or inactivated states seem to be unaltered by hypoxia. Thus, at low PO2 the number of channels that open in response to a depolarization decreases, and those channels that follow the activation pathway open more slowly and inactivate faster. At the macroscopic level, these changes are paralleled by a reduction in the peak current amplitude, slowing down of the activation kinetics, and acceleration of the inactivation time course. The effects of low PO2 can be explained by assuming that under this condition the closed state C0 is stabilized and the transitions to the absorbing inactivated state I1 are favored. The fact that hypoxia modifies kinetically defined conformational states of the channels suggests that O2 levels determine the structure of specific domains of the KO2 channel molecule. These results help to understand the molecular mechanisms underlying the enhancement of the excitability of glomus cells in response to hypoxia.
منابع مشابه
Potassium channel types in arterial chemoreceptor cells and their selective modulation by oxygen
Single K+ channel currents were recorded in excised membrane patches from dispersed chemoreceptor cells of the rabbit carotid body under conditions that abolish current flow through Na+ and Ca2+ channels. We have found three classes of voltage-gated K+ channels that differ in their single-channel conductance (gamma), dependence on internal Ca2+ (Ca2+i), and sensitivity to changes in O2 tension ...
متن کاملAre Kv channels the essence of O2 sensing?
With the exception of anaerobes, organisms depend on oxygen for the production of energy and for biosynthetic reactions. Therefore, cells, tissues, and organisms must be able to sense and respond to changes in the oxygen concentration of their environment. The response of mammalian cells to hypoxia is crucial for their survival, allowing cells to cope with a low-oxygen environment. There are, h...
متن کاملOxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation.
We have investigated the modifications of cytosolic [Ca2+] and the activity of Ca2+ channels in freshly dispersed arterial myocytes to test whether lowering O2 tension (PO2) directly influences Ca2+ homeostasis in these cells. Unclamped cells loaded with fura-2 AM exhibit oscillations of cytosolic Ca2+ whose frequency depends on extracellular Ca2+ influx. Switching from a PO2 of 150 to 20 mmHg ...
متن کاملA Role for DPPX Modulating External TEA Sensitivity of Kv4 Channels
Shal-type (Kv4) channels are expressed in a large variety of tissues, where they contribute to transient voltage-dependent K+ currents. Kv4 are the molecular correlate of the A-type current of neurons (I(SA)), the fast component of I(TO) current in the heart, and also of the oxygen-sensitive K+ current (K(O2)) in rabbit carotid body (CB) chemoreceptor cells. The enormous degree of variability i...
متن کاملLow pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body
The hypothesis that changes in environmental O2 tension (pO2) could affect the ionic conductances of dissociated type I cells of the carotid body was tested. Cells were subjected to whole-cell patch clamp and ionic currents were recorded in a control solution with normal pO2 (pO2 = 150 mmHg) and 3-5 min after exposure to the same solution with a lower pO2. Na and Ca currents were unaffected by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 100 شماره
صفحات -
تاریخ انتشار 1992